Problems on Calculating Speed

Here we will learn to solve different types of problems on calculating speed.

We know, the speed of a moving body is the distance traveled by it in unit time.             

Formula to find out speed = distance/time

Word problems on calculating speed:

1.  A man walks 20 km in 4 hours. Find his speed.

Solution:            

Distance covered = 20 km

Time taken = 4 hours

We know, speed = distance/time            

                       = 20/4 km/hr

Therefore, speed = 5 km/hr

2. A car covers a distance of 450 m in 1 minute whereas a train covers 69 km in 45 minutes. Find the ratio of their speeds.

Speed of car = Distance covered/Time taken = 450/60 m/sec = 15/2

                                                            = 15/2 × 18/5 km/hr

                                                            = 27 km/hr

Distance covered by train = 69 km

Time taken = 45 min = 45/60 hr = 3/4 hr

Therefore, speed of trains = 69/(3/4) km/hr

                                    = 69/1 × 4/3 km/hr

                                    = 92 km/hr

Therefore, ratio of their speed i.e., speed of car/speed of train = 27/92 = 27 : 92

3. Kate travels a distance of 9 km from her house to the school by auto-rickshaw at 18 km/hr and returns on rickshaw at 15 km/hr. Find the average speed for the whole journey.

Time taken by Kate to reach school = distance/speed = 9/18 hr = 1/2 hr

Time taken by Kate to reach house to school = 9/15 = 3/5 hr

Total time of journey = (1/2 + 3/5) hr

Total time of journey = (5 + 6)/10 = 11/10 hr

Total distance covered = (9 + 9) km = 18 km

Therefore, average speed for the whole journey = distance/speed = 18/(11/10) km/hr

= 18/1 × 10/11 = (18 × 10)/(1 × 11) km/hr

                      = 180/11 km/hr

                      = 16.3 km/hr (approximately)

Speed of Train

Relationship between Speed, Distance and Time

Conversion of Units of Speed

Problems on Calculating Distance

Problems on Calculating Time

Two Objects Move in Same Direction

Two Objects Move in Opposite Direction

Train Passes a Moving Object in the Same Direction

Train Passes a Moving Object in the Opposite Direction

Train Passes through a Pole

Train Passes through a Bridge

Two Trains Passes in the Same Direction

Two Trains Passes in the Opposite Direction

8th Grade Math Practice From Problems on Calculating Speed to HOME PAGE

New! Comments

Didn't find what you were looking for? Or want to know more information about Math Only Math . Use this Google Search to find what you need.

Worksheet on Conversion of Units of Speed

Worksheet on Calculating Time

Worksheet on Calculating Speed

Worksheet on Calculating Distance

Worksheet on Train Passes through a Pole

Worksheet on Train Passes through a Bridge  

Worksheet on Relative Speed

© and ™ math-only-math.com. All Rights Reserved. 2010 - 2022.

Interesting topics

Speed word problems

The speed word problems to follow don't have complicated math equations at all. Instead, the focus is on understanding how to apply the concept of speed, distance, and time. 

Interesting speed word problems

Problem #1 : Calculate the average speed of a lion that runs 45 meters in 5 seconds . What could be some possible instantaneous speeds?

Solution:   The formula to get the average speed is 

The total distance is 45 meters, so d = 45 meters.

It took the lion 5 seconds to reach a distance of 45 meters.

The total time is 5 seconds, so t = 5.

Just plug these into the formula. 

d = 9 meters per second.

You could also write d = 9 m/s.

Some possible instantaneous speed for the lion could be the followings:

13 meters in 1 second      v = 13 m/s

9 meters in 1 second        v  = 9 m/s

10 meters in 1 second      v  = 10 m/s 

8 meters in 1 second        v = 8 m/s

5 meters in 1 second        v = 5 m/s

As you can see the total distance is 13 + 9 + 10 + 8 + 5 = 45

and the total time is 1 + 1  + 1 + 1  + 1 = 5  

Challenging speed word problems

Problem #2 : How far is a house in New York if it takes you 5 hours to get there and your average speed is 35 miles per half hour?

First, notice that in the problem we said average speed instead of just speed. It is because you did not just do 35 miles per hour during the entire trip. Your speed changed from times to times, but the average comes to 35 miles per hour.

Second, it is convenient to convert miles per half hour to miles per hour.

35 miles per half hour is 70 miles per hour.

Lastly, convert the formula from speed to distance. 

Now, we have the speed and the time, we can get the distance.

Problem #3 : Your turn!

How far is a house in Florida if it takes you 4 hours to get there and your instantaneous speeds were 70 miles per hour, 50 miles per hour,  60 miles per hour, 10 miles per hour, and 0 miles per hour? 

Take a look also at the speed word problem below

Speed word problem

What is speed?

Recent Articles

Quadratic formula: easy to follow steps.

Jan 26, 23 11:44 AM

Area Formula - List of Important Formulas

Jan 25, 23 05:54 AM

Frequently used area formulas

100 Tough Algebra Word Problems. If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

Math vocabulary quizzes

About me :: Privacy policy :: Disclaimer :: Awards :: Donate Facebook page :: Pinterest pins  :: Instagram ::  Careers in mathematics  

Copyright © 2008-2021. Basic-mathematics.com. All right reserved

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Save citation to file

Email citation, add to collections.

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

The speed of mental rotation as a function of problem-solving strategies

40 subjects solved seven identical and seven mirror image visually-displayed mental-rotation problems, a measure of right hemisphere processing. Subjects who indicated that they had inferred that, if two objects were not identical, then they must be mirror images showed faster rotation times. This evidence supports the hypothesis that expedient problem-solving strategies may contribute to right-hemisphere processing speed as measured by mental rotation. That mental rotation and humor processing may draw on the same right hemisphere processes is also discussed.

Similar articles

Related information

Linkout - more resources, full text sources.

full text provider logo

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Distance, Time and Speed Word Problems | GMAT GRE Maths

Before you get into distance, time and speed word problems, take a few minutes to read this first and understand: How to build your credit score in USA as an international student .

Problems involving Time, Distance and Speed are solved based on one simple formula.

Distance = Speed * Time

Which implies →

Speed = Distance / Time   and

Time = Distance / Speed

Let us take a look at some simple examples of distance, time and speed problems.   Example 1. A boy walks at a speed of 4 kmph. How much time does he take to walk a distance of 20 km?

Time = Distance / speed = 20/4 = 5 hours.   Example 2. A cyclist covers a distance of 15 miles in 2 hours. Calculate his speed.

Speed = Distance/time = 15/2 = 7.5 miles per hour.   Example 3. A car takes 4 hours to cover a distance, if it travels at a speed of 40 mph. What should be its speed to cover the same distance in 1.5 hours?

Distance covered = 4*40 = 160 miles

Speed required to cover the same distance in 1.5 hours = 160/1.5 = 106.66 mph   Now, take a look at the following example:

Example 4. If a person walks at 4 mph, he covers a certain distance. If he walks at 9 mph, he covers 7.5 miles more. How much distance did he actually cover?

Now we can see that the direct application of our usual formula Distance = Speed * Time or its variations cannot be done in this case and we need to put in extra effort to calculate the given parameters.

Let us see how this question can be solved.

For these kinds of questions, a table like this might make it easier to solve.

  Let the distance covered by that person be ‘d’.

Walking at 4 mph and covering a distance ‘d’ is done in a time of ‘d/4’

IF he walks at 9 mph, he covers 7.5 miles more than the actual distance d, which is ‘d+7.5’.

He does this in a time of (d+7.5)/9.

Since the time is same in both the cases →

d/4 = (d+7.5)/9            →        9d = 4(d+7.5)   →        9d=4d+30        →        d = 6.

So, he covered a distance of 6 miles in 1.5 hours.   Example 5. A train is going at 1/3 of its usual speed and it takes an extra 30 minutes to reach its destination. Find its usual time to cover the same distance.

Here, we see that the distance is same.

Let us assume that its usual speed is ‘s’ and time is ‘t’, then

  s*t = (1/3)s*(t+30)      →        t = t/3 + 10      →        t = 15.

So the actual time taken to cover the distance is 15 minutes.

Note: Note the time is expressed in terms of ‘minutes’. When we express distance in terms of miles or kilometers, time is expressed in terms of hours and has to be converted into appropriate units of measurement.

Solved Questions on Trains

Example 1. X and Y are two stations which are 320 miles apart. A train starts at a certain time from X and travels towards Y at 70 mph. After 2 hours, another train starts from Y and travels towards X at 20 mph. At what time do they meet?

Let the time after which they meet be ‘t’ hours.

Then the time travelled by second train becomes ‘t-2’.

Distance covered by first train+Distance covered by second train = 320 miles

70t+20(t-2) = 320

Solving this gives t = 4.

So the two trains meet after 4 hours.   Example 2. A train leaves from a station and moves at a certain speed. After 2 hours, another train leaves from the same station and moves in the same direction at a speed of 60 mph. If it catches up with the first train in 4 hours, what is the speed of the first train?

Let the speed of the first train be ‘s’.

Distance covered by the first train in (2+4) hours = Distance covered by second train in 4 hours

Therefore, 6s = 60*4

Solving which gives s=40.

So the slower train is moving at the rate of 40 mph.  

Questions on Boats/Airplanes

For problems with boats and streams,

Speed of the boat upstream (against the current) = Speed of the boat in still water – speed of the stream

[As the stream obstructs the speed of the boat in still water, its speed has to be subtracted from the usual speed of the boat]

Speed of the boat downstream (along with the current) = Speed of the boat in still water + speed of the stream

[As the stream pushes the boat and makes it easier for the boat to reach the destination faster, speed of the stream has to be added]

Similarly, for airplanes travelling with/against the wind,

Speed of the plane with the wind = speed of the plane + speed of the wind

Speed of the plane against the wind = speed of the plane – speed of the wind

Let us look at some examples.

Example 1. A man travels at 3 mph in still water. If the current’s velocity is 1 mph, it takes 3 hours to row to a place and come back. How far is the place?

Let the distance be ‘d’ miles.

Time taken to cover the distance upstream + Time taken to cover the distance downstream = 3

Speed upstream = 3-1 = 2 mph

Speed downstream = 3+1 = 4 mph

So, our equation would be d/2 + d/4 = 3 → solving which, we get d = 4 miles.   Example 2. With the wind, an airplane covers a distance of 2400 kms in 4 hours and against the wind in 6 hours. What is the speed of the plane and that of the wind?

Let the speed of the plane be ‘a’ and that of the wind be ‘w’.

Our table looks like this:  

  4(a+w) = 2400 and 6(a-w) = 2400

Expressing one unknown variable in terms of the other makes it easier to solve, which means

a+w = 600 → w=600-a

Substituting the value of w in the second equation,

a-(600-a) = 400 → a = 500

The speed of the plane is 500 kmph and that of the wind is 100 kmph.  

More solved examples on Speed, Distance and Time

Example 1. A boy travelled by train which moved at the speed of 30 mph. He then boarded a bus which moved at the speed of 40 mph and reached his destination. The entire distance covered was 100 miles and the entire duration of the journey was 3 hours. Find the distance he travelled by bus.

Let the time taken by the train be ‘t’. Then that of bus is ‘3-t’.

The entire distance covered was 100 miles

So, 30t + 40(3-t) = 100

Solving which gives t=2.

Substituting the value of t in 40(3-t), we get the distance travelled by bus is 40 miles.

Alternatively, we can add the time and equate it to 3 hours, which directly gives the distance.

d/30 + (100-d)/40 = 3

Solving which gives d = 60, which is the distance travelled by train. 100-60 = 40 miles is the distance travelled by bus.   Example 2. A plane covered a distance of 630 miles in 6 hours. For the first part of the trip, the average speed was 100 mph and for the second part of the trip, the average speed was 110 mph. what is the time it flew at each speed?

Our table looks like this.

Assuming the distance covered in the 1 st part of journey to be ‘d’, the distance covered in the second half becomes ‘630-d’.

Assuming the time taken for the first part of the journey to be ‘t’, the time taken for the second half becomes ‘6-t’.

From the first equation, d=100t

The second equation is 630-d = 110(6-t).

Substituting the value of d from the first equation, we get

630-100t = 110(6-t)

Solving this gives t=3.

So the plane flew the first part of the journey in 3 hours and the second part in 3 hours.   Example 2. Two persons are walking towards each other on a walking path that is 20 miles long. One is walking at the rate of 3 mph and the other at 4 mph. After how much time will they meet each other?

  Assuming the distance travelled by the first person to be ‘d’, the distance travelled by the second person is ’20-d’.

The time is ‘t’ for both of them because when they meet, they would have walked for the same time.

Since time is same, we can equate as

d/3 = (20-d)/4

Solving this gives d=60/7 miles (8.5 miles approximately)

Then t = 20/7 hours

So the two persons meet after 2 6/7 hours.  

Practice Questions for you to solve

Problem 1: Click here

A boat covers a certain distance in 2 hours, while it comes back in 3 hours. If the speed of the stream is 4 kmph, what is the boat’s speed in still water?

A) 30 kmph B) 20 kmph C) 15 kmph D) 40 kmph

Answer 1: Click here

Explanation

Let the speed of the boat be ‘s’ kmph.

Then, 2(s+4) = 3(s-4) → s = 20

Problem 2: Click here

A cyclist travels for 3 hours, travelling for the first half of the journey at 12 mph and the second half at 15 mph. Find the total distance he covered.

A) 30 miles B) 35 miles C) 40 miles D) 180 miles

Answer 2: Click here

Since it is mentioned, that the first ‘half’ of the journey is covered in 12 mph and the second in 15, the equation looks like

(d/2)/12 + (d/2)/15 = 3

Solving this gives d = 40 miles

MBA Song | Start here | Success stories | Reality check | Knowledgebase | Scholarships | Services Serious about higher ed? Follow us:                

MBA Crystal Ball

17 thoughts on “Distance, Time and Speed Word Problems | GMAT GRE Maths”

Meera walked to school at a speed of 3 miles per hour. Once she reached the school, she realized that she forgot to bring her books, so rushed back home at a speed of 6 miles per hour. She then walked back to school at a speed of 4 miles per hour. All the times, she walked in the same route. please explain above problem

When she walks faster the time she takes to reach her home and school is lower. There is nothing wrong with the statement. They never mentioned how long she took every time.

a man covers a distance on a toy train.if the train moved 4km/hr faster,it would take 30 min. less. if it moved 2km/hr slower, it would have taken 20 min. more .find the distance.

Let the speed be x. and time be y. A.T.Q, (x+4)(y-1/2)=d and (x-2)(y+1/3)=d. Equate these two and get the answer

Could you explain how ? you have two equations and there are 3 variables.

The 3rd equation is d=xy. Now, you have 3 equations with 3 unknowns. The variables x and y represent the usual speed and usual time to travel distance d.

Speed comes out to be 20 km/hr and the time taken is 3 hrs. The distance traveled is 60 km.

(s + 4) (t – 1/2)= st 1…new equotion = -1/2s + 4t = 2

(s – 2) (t + 1/3)= st 2…new equotion = 1/3s – 2t = 2/3

Multiply all by 6 1… -3s + 24t = 12 2… 2s – 12t = 4 Next, use elimination t= 3 Find s: -3s + 24t = 12 -3s + 24(3) = 12 -3s = -60 s= 20

st or distance = 3 x 20 = 60 km/h

It’s probably the average speed that we are looking for here. Ave. Speed= total distance/ total time. Since it’s harder to look for one variable since both are absent, you can use, 3d/ d( V2V3 + V1V3 + V1V2/ V1V2V3)

2 girls meenu and priya start at the same time to ride from madurai to manamadurai, 60 km away.meenu travels 4kmph slower than priya. priya reaches manamadurai and at turns back meeting meenu 12km from manamaduai. find meenu’s speed?

Hi, when the two girls meet, they have taken equal time to travel their respective distance. So, we just need to equate their time equations

Distance travelled by Meenu = 60 -12 = 48 Distance travelled by Priya = 60 + 12 = 72 Let ‘s’ be the speed of Meenu

Time taken by Meenu => t1 = 48/s Time taken by Priya => t2 = 72/(s+4)

t1=t2 Thus, 48/s = 72/(s+4) => 24s = 192 => s = 8Km/hr

A train can travel 50% faster than a car. Both start from point A at the same time and reach point B 75 KMS away from A at the same time. On the way, however the train lost about 12.5 minutes while stopping at the stations. The speed of the car is:

Let speed of the CAR BE x kmph.

Then, speed of the train = 3/2(x) .’. 75/x – 75/(3/2)x= 125/(10*60) — subtracting the times travelled by two them hence trains wastage time

therefore x= 120 kmph

A cyclist completes a distance of 60 km at the same speed throughout. She travels 10 km in one hour. She stops every 20 km for one hour to have a break. What are the two variables involved in this situation?

For the answer, not variables: 60km divided by 10km/h=6 hours 60 divided by 20= 3 hours 3 hours+6 hours= 9 hours Answer: 9 hours

Let the length of the train to prod past a point be the intrinsic distance (D) of the train and its speed be S. Its speed, S in passing the electric pole of negligible length is = D/12. The length of the platform added to the intrinsic length of the train. So, the total distance = D + 200. The time = 20 secs. The Speed, S = (D + 200)/20 At constant speed, D/12 = (D + 200)/20 Cross-multiplying, 20D = 12D + 200*12 20D – 12D = 200*12; 8D = 200*12 D = 200*12/8 = 300m. 4th Aug, 2018

Can anyone solve this? Nathan and Philip agree to meet up at the park at 5:00 pm. Nathan lives 300 m due north of the park, and Philip lives 500 m due west of the park. Philip leaves his house at 4:54 pm and walks towards the park at a pace of 1.5 m/s, but Nathan loses track of time and doesn’t leave until 4:59 pm. Trying to avoid being too late, he jogs towards the park at 2.5 m/s. At what rate is the distance between the two friends changing 30 seconds after Nathan has departed?

Leave a Comment Cancel reply

Speed Distance Time Video

https://youtu.be/rQUwNC0gqdg?t=2557

Speed is the scalar quantity of change in distance travelled along a path, divided by the time it takes to travel that part of the path.

Contrast with velocity

Speed is different from velocity, the latter has direction. Here's why that changes things:

A\\\rule{0.513\textwidth}{1pt}\\[-1.5pt]\ignorespaces\rule{1pt}{1cm}\rule{1cm}{1pt}\rule{1pt}{1cm}\rule{1cm}{1pt}\rule{1pt}{1cm}\rule{1cm}{1pt}\rule{1pt}{1cm}\rule{1cm}{1pt}\rule{1pt}{1cm}\rule{1cm}{1pt}\rule{1pt}{1cm}\\\rule{0.513\textwidth}{0pt}B

On the other hand, velocity depends on a distance (called displacement) and ' direction . If A walks around the block (4 equal sides), she may have walked 4 units of length in 4 minutes; giving her a speed of 1 unit of length per minute. However she has a distance from point of origin (called displacement) of 0 units of length; therefore her velocity is 0 units of length per minute in the opposite path direction to which she arrived back at the point of origin.

Create a new account

Lost your activation email?

Forgot your password or username?

IMAGES

  1. Problem solving about average speed

    the speed of problem solving

  2. PPT

    the speed of problem solving

  3. Average Velocity Problem Solving animation

    the speed of problem solving

  4. Average Speed Word Problems

    the speed of problem solving

  5. Speed Problem Worksheet

    the speed of problem solving

  6. Speed word problems

    the speed of problem solving

VIDEO

  1. speed solving normal practice

  2. The speed of solving

  3. speed solve

  4. Physics. Problem solving. 01_04

  5. MECHANICS Problem No. 76

  6. Speed solve

COMMENTS

  1. What Are the Six Steps of Problem Solving?

    The six steps of problem solving involve problem definition, problem analysis, developing possible solutions, selecting a solution, implementing the solution and evaluating the outcome. Problem solving models are used to address issues that...

  2. What Are Some Vehicle Speed Sensor Problems?

    When problems occur with the speed sensor, the vehicle does not send the right signal to the speedometer, regulate fuel properly, operate cruise control or regulate ignition timing correctly.

  3. How Do You Solve a Problem When You Have Different Bases With the Same Exponents?

    When multiplying or dividing different bases with the same exponent, combine the bases, and keep the exponent the same. For example, X raised to the third power times Y raised to the third power becomes the product of X times Y raised to th...

  4. Problems on Calculating Speed

    Problems on Calculating Speed · 1. A man walks 20 km in 4 hours. Find his speed. · 2. A car covers a distance of 450 m in 1 minute whereas a train covers 69 km in

  5. Speed Word Problems

    The total distance is

  6. Art of Problem Solving: Speed Problem Solving

    Art of Problem Solving's Richard Rusczyk tackles a challenging problem involving speed.

  7. Art of Problem Solving: Speed Problems Part 1

    Comments • 11 · Art of Problem Solving: Speed Problems Part 2 · Solving Three Acceleration Problems · Velocity - speed, distance and time - math

  8. Problem-solving speed and learning efficiency in relation to various

    Individual differences in problem solving are known to be repeatable across novel tasks and time in mynas (Griffin & Diquelou, 2015;Griffin et al., 2016;Lermite

  9. Success and speed of problem solving by individuals and groups

    Success and speed of problem solving by individuals and groups. Psychol Rev. 1962 Nov;69:520-36. doi: 10.1037/h0043862.

  10. The speed of mental rotation as a function of problem-solving

    This evidence supports the hypothesis that expedient problem-solving strategies may contribute to right-hemisphere processing speed as measured by mental

  11. Distance, Time and Speed Word Problems

    Time = Distance / speed = 20/4 = 5 hours. Example 2. A cyclist covers a distance of 15 miles in 2 hours. Calculate his speed. Solution. Speed =

  12. Speed Distance Time Video

    Definition. Speed is the scalar quantity of change in distance travelled along a path, divided by the time it takes to travel that part of the path

  13. DISTANCE, TIME, SPEED PRACTICE PROBLEMS

    but you must show all of the steps involved in doing the problem. ... What is Serina's average speed on her.

  14. Success and speed of problem solving by individuals ...

    With this addition, the pooling of contributions theory accurately predicts group problem solving data." (PsycINFO Database Record (c) 2016 APA